Cordyceps Mushroom Supplement Types Explained + The Health Benefits

Cordyceps Guide

Cordyceps mushroom seems to be all the rage right now. You see it in every adaptogen and pre workout supplement. It’s being talked about extensively in the mushroom community and is one of the top superfoods.

So what is all the hype surrounding this fascinating fungus. Let’s first explore exactly what this fascinating fungus is and how it can benefit your health. Then we will look at the common variations of cordyceps on the market and help decipher what to look for in a cordyceps supplement.

What Are Cordyceps: Spores, Sinensis Vs. Militaris – What’s Really In Your Supplements?

Stroma and caterpillar of Cordyceps sinensis

Cordyceps is a parasitic fungus that includes over 400 different species which are found all over the world in countries like China, Japan, India, USA, Australia, Peru, Bolivia and many more.

They typically infect other insects and arthropods with each species of Cordyceps infecting a very specific bug.

The lifecycle begins with Cordyceps spores landing on the insect and then the spore will germinate and small thread-like filaments called hyphae will begin to grow inside the insect and turn into mycelium. The mycelium will continue to consume the insect from the inside and when the insect is fully consumed and the environmental conditions are correct, a blade-like mushroom (fruiting body) will be produced from the insect’s head. The mushroom will then release spores and the lifecycle will start over.

Many have seen the BBC Planet Earth clip of Cordyceps infecting ants.

Cordyceps was even featured as the main antagonist of the popular video game The Last of Us where a mutant Cordyceps strain was able to infect humans creating “Cordyceps zombies”.

Just for the record, no, Cordyceps does not infect humans.

Wild Cordyceps Sinensis (Ophiocordyceps sinensis) – The Caterpillar fungus

Wild Cordyceps sinensis caterpillar and fruiting body

Wild Cordyceps sinensis. The caterpillar is below ground while the mushroom is above ground. ©Nammex

The most well known species of Cordyceps is Cordyceps sinensis (now known officially as Ophiocordyceps sinensis) which infects the caterpillar of the Hepialus moth. It is mainly found at high elevations in Tibet and the Chinese provinces of Sichuan, Yunnan, Qinghai and Gansu. It can also be found but is less abundant in India, Nepal, and Bhutan.

In Tibet it is known as Yarsagumba or yartsa gunbu and in China it is known as Dōnɡ Chónɡ Xià Cǎo (冬虫夏草) which translate to summer grass, winter worm.

Due to the rapid rise in price on this precious resource (more below), it has now been dubbed “himilayan gold” or “himilayan viagra”, becoming a significant contributor to household income in the harvesting regions. So much so that there has been disputes over harvesting territory and outsiders have tried to push their way in. There are now harvesting permits being issued by the Chinese government and local land holders for access to the growing regions. For more on Cordyceps harvesting and the lifestyle in Tibet, see Daniel Winkler’s article in Fungi Magazine.10

More recently, concerns over the sustainability of Cordyceps sinensis have been raised due to over-harvesting, ecosystem degradation and climate change.12

Cordyceps and the Chinese Runners

This is an entire article in itself, but Cordyceps sinensis was made famous back in 1993 at the Chinese national games in Beijing where multiple Chinese runners shattered track and field records.

Most notable was Wang Jungxia, who beat the 10,000m world record by 42 seconds. This record lasted 23 years.

3 days later, she came second to teammate Yunxia Qu in the 1500m. They both beat the current world record and Yunxia’s record stood for 22 years.

Then 2 days after that, Wang posted a world record in the 3000m. This record still stands today and 4 of the top 5 times in the 3000m come from Chinese athletes in these 1993 games.

Their coach, Ma Junren claimed their success due to a tonic of Cordyceps sinensis and turtle blood.

This Olympic runner’s story is touted all around the internet to promote Cordyceps products, but what is typically left out is that many of Ma’s athletes later failed drug tests. Because of this, Junren Ma was eventually dropped as part of Chinese olympic team.

This era of sports in the 80s to mid-90s was rife with doping scandals and it begs the question, was their success really due to Cordyceps?

Wild Cordyceps sinensis

Commonly shown in marketing materials yet these are not in your supplements.

Why Cordyceps Sinensis Are NOT In Your Cordyceps Supplement

True, wild Cordyceps sinensis (shown above) is not in 99.9% of Cordyceps supplements because of its exceptionally high price tag. In fact, wild Cordyceps sinensis costs over $20,000 per kilogram, making it the most expensive mushroom in the world.

They are almost exclusively sold in Asia and rarely make it into the North American market.

The high price is due to the fact that for many years, the Chinese have been unable to cultivate this mushroom. This has fueled increased demand on a set supply of wild Cordyceps sinensis. Only recently have the Chinese figured out how to cultivate this mushroom but it is not at a production scale yet to make an impact on the wild Cordyceps sinensis prices.

Cultivated Cordyceps sinensis using the Hepialus moth

Cultivated Cordyceps sinensis using the Hepialus moth ©Real Mushrooms

Even though the majority of Cordyceps supplements do not contain the caterpillar fungus, this has not stopped many companies from using photos of this mushroom in their marketing materials and label information causing customers to believe they are consuming this mushroom. Sadly, they are not.

But if the Caterpillar fungus isn’t in your supplements, what is?

Forms of Cordyceps Supplements: CS-4, Myceliated Grain and Mushroom Extracts (Militaris)

Liquid fermentation mycelium facility

Liquid fermentation mycelium factory in China. ©Real Mushrooms

Cordyceps Cs-4

In the 1980’s, when the wild Cordyceps sinensis was gaining in popularity and the price tag kept climbing, scientists in China set out to cultivate this fungus. Many tried and many failed. Still to this day, there is no affordable cultivated version of this mushroom. What the scientists did end up with are Cordyceps anamorphs, mycelium cultures that are unable to produce a mushroom (fruiting body).

These anamorphs were grown in liquid fermentation to create mass amounts of pure mycelium.

This process is known as liquid culture mycelium or liquid fermentation and involves growing the mycelium in a liquid solution of nutrients which can then be removed, leaving you with pure mycelium.

These anamorphs were studied extensively and were found to produce similar results to the wild Cordyceps sinensis.

This ended up turning into what is now known as Cordyceps Cs-4. After undergoing clinical trials in China, the Chinese government approved its use in TCM hospitals and it is now recognized as a safe natural product drug in China.

If a Cordyceps supplement is claiming to be Cordyceps sinensis and it is made in China, it is almost certainly Cordyceps Cs-4.

Other Cs-4 products may also be labeled as Paecilomyces hepiali which is an anamorph form of Cordyceps sinensis.

Do not confuse Cordyceps Cs-4 with Cordyceps myceliated grain (below) as these are very different products.

Cordyceps Myceliated Grain

Mycelium grown on grain

Mycelium growing on a sterilized grain substrate. ©Nammex

Due to the fact that it is not economical to grow mushrooms in North America for supplement use, if a Cordyceps product is grown in North America, it is almost certainly Cordyceps myceliated grain, recently referred to as MOG (Mycelium On Grain).

Myceliated grain can also go by mycelium on grain, mycelium biomass or grain spawn.

Myceliated grain products will typically be labeled as Cordyceps sinensis or Cordyceps militaris.

Instead of growing the mycelium in liquid like what is used for Cordyceps Cs-4, the mycelium is instead grown in a plastic bag containing sterilized grain. This can also be referred to as solid state fermentation.

The issue here is that unlike being in liquid, the mycelium cannot be separated from the grain so the grain ends up in the final product.

It has been shown with myceliated grain products that the mycelium does not fully consume the grain so much of the final product is actually the grain the mycelium grows on. This is most apparent with Cordyceps as it is a slow growing fungus.

From the table below you see that the high amount of alpha-glucans, which represent starch from the grain. Starch is an alpha-glucan. This confirms that the grain medium the Cordyceps mycelium grows on is not being fully consumed.

The high amount of grain translates into a low amount of mycelium and this is confirmed in the low beta-glucan numbers. This is why it is important to measure beta-glucans and not polysaccharides for medicinal mushroom products. These samples can tout high polysaccharide numbers (beta + alpha) but the majority of it comes from non-beneficial starches which are alpha-glucans.

Beta-glucan and Alpha-glucan results of Cordyceps mycelium grown on grain.3,4

 Beta-glucansAlpha-glucans
Sample#11.5%64%
Sample#23%65%
Sample#31%45%
Cordyceps Mycelium Nutritional Comparison

Nutritional analysis of Cordyceps mycelium grown on grains showing that these products closely mirror the grain itself and not the true Cordyceps mushroom. ©Nammex

The nutritional analysis above also confirms how well Cordyceps myceliated grain tracks the grain it is grown on. This further demonstrates how closely myceliated grain is to the grain itself which leads you to wonder how much is actually mycelium.

Cordyceps Cs-4 vs Cordyceps Myceliated Grain

Myceliated grain is often justified by referencing research on pure mycelium made through liquid fermentation.

As pointed out above with Cs-4 and shown below, Cordyceps myceliated grain is very different from Cordyceps Cs-4 so using Cordyceps Cs-4 research to justify the use of Cordyceps myceliated grain is not valid and is misleading to the consumer.

 Beta-glucansAlpha-glucans
Cordyceps Cs-47.58%1.61%
Cordyceps myceliated grain1.5%64%

Cordyceps Mushroom Extracts (militaris)

Cordyceps militaris fruiting bodies

Cordyceps militaris mushrooms (fruiting bodies) ©Nammex

There is currently one type of Cordyceps species that can be commercially cultivated at scale to produce a mushroom (fruiting body) and it is becoming quite popular. This is Cordyceps militaris. By using Cordyceps militaris, for the first time, true Cordyceps mushroom extracts can be made.

By being made from the mushroom, we see much higher levels of the important beta-glucans. Our Cordyceps-M product which is extracted exclusively from Cordyceps militaris mushrooms has greater than 25% beta-glucans. Compare that to Cs-4 which typically has less than 10% beta-glucans and Cordyceps mycelium on grain which typically has 1-3% beta-glucans.

One of the unique things about Cordyceps militaris is that it produces the compound cordycepin (3′-deoxyadenosine) in much higher amounts when compared to Cordyceps sinensis.

Nucleosides in Cordyceps and various medicinal mushrooms

Yuan, J. P., Zhao, S. Y., Wang, J. H., Kuang, H. C., Liu, X., Uan, J. I. A. N. I. N. G. Y., … Iu, X. I. N. L. (2008). Distribution of nucleosides and nucleobases in edible fungi. Journal of Agricultural and Food Chemistry, 56(3), 809–815.

As seen from the table above Cordyceps militaris has up to 90 times more cordycepin (column “Co”) when compared with the wild Cordyceps sinensis. Cs-4 would likely have even less cordycepin than the wild Cordyceps sinensis and Cordyceps mycelium on grain would have almost no cordycepin due to the low amount of mycelium present.

This is very important as products touting the benefits of cordycepin and labeled as Cordyceps sinensis would likely have undetectable amounts. Either that or the product is improperly labeled as Cordyceps sinensis when it is actually Cordyceps militaris.

Note that Cordyceps militaris products grown in North America would still be myceliated grain and not a true mushroom extract. Pure mushroom extract powders almost solely come from Asia, with China accounting for over 85% of the world’s mushroom production.

More and more research is coming out showing that Cordyceps militaris has similar benefits to the traditional wild Cordyceps sinensis and has traditionally been used as an alternative to Cordyceps sinensis in Traditional Chinese Medicine.

Cordycepic Acid & Other Nucleosides

Cordycepin acid is not to be confused with cordycepin which is a unique compound in Cordyceps but many Cordyceps products talk about Cordycepic acid (sometimes spelled Cordyceptic) as a beneficial compound in Cordyceps. But this was debunked back in the 60s as not being a compound unique to Cordyceps, but a compound that is found in all medicinal mushrooms, which is D-Mannitol or Mannitol.1

Other nucleosides like adenine, adenosine and uridine which are commonly touted in Cordyceps are also found in other fungi as well (see table above).

Health Benefits of Cordyceps Mushrooms

Now that we’ve dispelled a lot of the misinformation around Cordyceps, let’s look at some of the benefits of using Cordyceps.

Traditional Chinese Medicinal Uses

In Traditional Chinese Medicine, cordyceps (Dōnɡ Chónɡ Xià Cǎo 冬虫夏草) was considered a very special tonic as it was offered to the Emperor’s court and others among Chinese nobility. The first written record was mentioned in the year AD 620. Traditionally it was used as a lung and kidney tonic making it useful for respiratory ailments, physical exhaustion and for those with a weak constitution. Low sexual function, libido and performance are also keynotes for cordyceps use in traditional literature.

Cordyceps is considered a jing tonic by nourishing yin, boosting yang and supporting kidney essence. Essence is considered to be the elixir of life in TCM. Essence comes from lifestyle (post-natal qi: breathing, diet, meditation, mushrooms and herbs) or from energetic reserves which we are born with (pre-natal qi). Cordyceps is considered to be placed on equal value with other valued tonics like ginseng, reishi and deer antler velvet.

Cordyceps has a sweet flavour and is slightly warm in energetics. These more subtle qualities of cordyceps are used to make sure cordyceps aren’t used in the wrong scenarios. For example, due to the stimulating and strengthening nature of cordyceps, it is contraindicated in conditions with lung heat (infections) based on its ability to not only strengthen the person but also the external pathogen causing the lung compromise.

There have been 50 medicines and 2 cordyceps supplements approved in China since 2002.

Think vigor and vitality when looking at the traditional applications of cordyceps: a secret tonic known to strengthen, rebuild and energize the body and mind.

Increase Exercise Performance

Cordyceps showed improved exercise performance in healthy older patients with improved respiratory and metabolic functioning.44 This study took twenty healthy elderly individuals ages 50-75. One group was the control and the other group took 333 mg of Cs-4 or 3 capsules per day. The subjects performed the stationary cycle ergometer using breath-by-breath examination at baseline and the end of the study. The results were quite good!

Following 12 weeks of Cs-4 supplementation, the healthy elderly individuals lactate threshold increased by 10.5% and their ventilatory threshold increased by 8.5%. On the other hand, the control group saw no changes in VO2 max.5

Similar results were shown in a randomized double-blind placebo-controlled clinical trial which showed a 7% improvement in VO2max in healthy older individuals.48

Cordyceps was shown in a small study to have no effect on aerobic capacity in trained athletes. This research theorizes that trained athletes are already close to their aerobic capacity and cordyceps mechanisms of action have less of an effect.45

Another human study supported the use of cordyceps on energy support and sympathetic activation during exercise.49

Animal studies show that the polysaccharides in cordyceps can have an anti-fatigue effect and improve exercise performance biomarkers.46 This was also shown in another study which found that the rodents that received two weeks of Cordyceps militaris supplementation displayed greater levels of delayed fatigue compared to the rodents not given Cordyceps militaris. Not only that, but the CM rodent group had higher levels of ATP, antioxidant enzyme levels and best part of all, lower levels of lactic acid (a key component regarding fatigue and time to exhaustion). In other words, these rodents were able to push longer and harder without tiring out.8

The antioxidative and general adaptogen effects of cordyceps can support athletes during and after their performance.50 Recovery is a critical time often overlooked by athletes of all levels. Athletes using cordyceps for performance enhancement should also consider its recovery potential.

Anti-inflammatory Properties

Beta-glucans and cordycepin in Cordyceps militaris have been theorized to be the main compounds responsible for it’s anti-inflammatory effect.14, 23 Human cell studies show cordyceps can decrease inflammation markers.15, 16, 17, 18, 19, 20 Mouse studies on type 1 diabetes suggest that the immune and inflammation properties of cordyceps may slow destruction of pancreatic beta cells.21 The immunomodulating and anti-inflammatory properties of cordyceps may help rebalance the T regulatory and Th17 cell ratio seen in this mouse study.22

As autoimmune conditions are often accompanied by inflammation, cordyceps could become an important therapeutic strategy.23, 51 Rheumatoid arthritis in vitro studies suggest that cordycepin may decrease inflammation in immune cells related to inflammation.24

Age related inflammation to the cells and mitochondria can be influenced by free radicals and reactive oxygen species. Cordyceps may help oxygen delivery at a cellular level which can help decrease inflammation.25

Cordycepin may be a compound to consider when addressing inflammation associated with degenerative disc degeneration, as it has been shown to have an effect on the NF-κB pathway in vitro.40

Cordyceps may have an effect on adenosine receptors which explains some of its anti-inflammatory properties.55, 56

Shop Mushroom Extracts

Testosterone

Traditionally cordyceps were used for sexual performance, low libido, and as an aphrodisiac but modern science may also support its use for androgenic potential.

An animal study showed that cordyceps decreased bisphenol A (BPA; a hormone-disrupting plastic) induced reproductive damage while increasing testosterone, sperm motility and sperm count.26

Cordycepin may increase steroidogenic acute regulatory (STAR) enzyme which allows the starting substrate of all hormones, cholesterol, to enter the mitochondria for the production of steroid hormones. Cholesterol is converted to pregnenolone and pregnenolone to testosterone.27, 28

A lot of individuals looking for increases in testosterone often make the mistake of overtraining. Overtraining can lead to an increase in free radicals, leading to oxidative stress on the sexual organs.29 Cordyceps has been shown to have anti-oxidative properties.30

An animal study on sperm quality and quantity showed positive results using cordyceps mycelium (not specified but likely liquid fermentation mycelium as the study is from Taiwan).31

An endurance athlete study showed that cordyceps supplementation combine with reishi mushroom supplementation decreased overtraining markers and the testosterone and cortisol ratio improved. This same study showed decreases in oxidative stress.32

A small study sample16 showed that young, healthy male adults showed no improvements in physical endurance or testosterone levels when supplementing with 2.4g/day of cordyceps.33

Less may be more when looking at dosing for testosterone effects; a few of these animal studies showed higher testosterone levels with the lower dosing (1% vs 5%).

Libido

Cordyceps was used traditionally to support libido and all things related to sexual functioning but clinical data is lacking in this area.

Most of the in vitro studies and in vitro animal studies suggest that cordyceps libido-enhancing effects may come from its testosterone regulatory and hormone supportive actions.

A study on patients with low libido given cultured cordyceps showed a 64.5% improvement.41 A 2016 review referenced a cordyceps study which increased libido and sexual performance in men and women.62

One other thing to consider is that medicinal mushrooms can be 5-alpha-reductase (5AR) inhibitors which could prevent testosterone from being converted to dihydrotestosterone (DHT). This is also why you see claims to take medicinal mushrooms to combat hair loss as many male pattern baldness drugs are 5AR inhibitors.63

The evidence to support the libido enhancing effects of Cordyceps is weak at best. Other than traditional and historic use there is minimal research.34,35

Type-2 Diabetes

Animal studies suggest that cordyceps may help manage common symptoms of type 2 diabetes such as high blood sugar, weight loss and excessive thirst.36 Cordyceps were also shown to have kidney protective and antioxidant effects.37 High blood sugar levels in type 2 diabetes can cause damage to the kidneys due to increased oxidative stress and reactive oxygen species.
Further evidence is needed to explore the preliminary findings of cordyceps biomedical application in increasing kidney function in compromised conditions like type 2 diabetes.38

In another animal study, hypoglycemic effects were noted after a high-fat diet was used to simulate diabetic like conditions.39 It is to be noted that a comparable dose used in humans from the methodology of this study would require impractical dosages.

There is currently no clinical data to support assisting with diabetic type conditions.

Heart Health

Cordyceps has been shown to decrease LDL levels in animal studies.41, 42

Cordyceps protective role on the cardiovascular system may be due to its adenosine and antioxidative effects. The compounds in cordyceps are thought to activate adenosine receptors which can provide some cardioprotective effects. In fact, cordyceps is used in China for heart rhythm disorders.43

Cordyceps performance enhancement mentioned above is another significant indicator of its effect on the cardiovascular system.44,45,46,47,48,49,50

Anxiety

Direct anxiety and cordyceps data is lacking though there is some supportive research.

Cordyceps may be supportive in mental health protocols such as anxiety which has been associated with higher levels of inflammation.52, 53 The anti-inflammatory properties of cordyceps decrease oxidative stress while providing support to the psychoendoneuroimmunology processes in the body. This field of study incorporates the interaction between the psychological, nervous and immune systems of an individual. Adaptogens are known mediators of this system with their ability to build resilience.54

Animals studies show that cordycepin may be neuroprotective in certain populations and pathologies, specifically neurovascular dysfunction and brain injuries.57 Synaptic functions (neurotransmitters in neural tissue) depend on healthy mitochondria and ATP for proper functioning.58

Cordyceps is considered a stimulating adaptogen, meaning it is more energizing and anabolic compared to other adaptogens that are more neutral, calming or restorative. An example of a calming adaptogen is holy basil. TCM and ayurvedic knowledge has best understood the applications of different classes of adaptogens.

Weight Loss

There is no strong evidence to support cordyceps use for weight loss. One mouse study noted weight loss and insulin sensitivity in type 2 diabetic rats.36

Cordyceps Safety, Dosage and Side Effects

Safety

Cordyceps has moderate drug interactions with anti-coagulant, immunosuppressant, hormone replacement and prednisolone medications.

Cordyceps may be contraindicated in breast and prostate cancer until further studies are performed.59

In Traditional Chinese Medicine, Cordyceps is contraindicated in acute fever, flu or external pathogen invasion.

Dosage

Typical dosage in the scientific literature is 1-3 g/day. This would also depend on the form of Cordyceps and the potency.

Generally speaking, a higher dose is used in the research in order to see effects. One study used 4g/day for performance enhancement.47 Higher doses can be considered for specific immune support with a recommendation from a medical professional.

Side Effects

Cordyceps is considered a generally well-tolerated supplement with limited side effects. Some users can experience mild diarrhea, constipation, and abdominal discomfort which may be decreased by taking cordyceps after a meal. There has been one case of a slight decrease in kidney function in an already compromised individual.60, 61

Cordyceps may cause anxiety in some individuals due to its energizing nature and relationship with ATP. The constitution and status of adrenal function is something to consider when using this medicinal mushroom.

How to take Cordyceps

The easiest way to take advantage of the health benefits of cordyceps militaris mushrooms is to use an extract either in capsules or powder form. The cell wall of mushrooms is made up of chitin which is the same substance that makes up crab shells. By extracting the mushrooms, this chitin will break down allowing our bodies to have better access to the active constituents.

A cordyceps mushroom extract produces a powder that is highly concentrated in bioactive compounds like beta-glucans and cordycepin. This is the method that Real Mushrooms uses with its organic mushrooms to produce the potent supplements it offers.

In comparison, eating cordyceps militaris mushrooms as food or using a myceliated grain-based supplement product will provide much smaller concentrations of the beneficial constituents.

While Real Mushrooms allows for simplicity of use by offering a capsule format, we also offer pouches of Cordyceps extract powder so the extract can easily be incorporated into healthy recipes. Once you discover the pleasure of taking the Cordyceps powder, the sky’s the limit for its uses in smoothies, stews, coffee, stir frys, and other meals and drinks.

To spark your creative application of Cordyceps powder in your diet, consider trying one of the recipes Real Mushroom users and health practitioners have submitted:

Mushroom Cacao Latte
Flu Season Mocha
Paleo Superfood Butter Biscuits
Muscle Recovery Bone Broth
Anti-Inflammatory Mushroom Elixir
Energizing Spiced Mushroom Elixir
The Everything Smoothie
Sexy Mushroom Chocolate Truffles

Summary

It is very important when selecting a Cordyceps product to know exactly where it is from and how it is made. Scrutinize the label and supplements panel very carefully.

Here are 6 primary takeaways to remember about Cordyceps supplements:

  1. Cordyceps sinensis is not in any supplements due to its price tag
  2. Cordyceps militaris is the only species able to be used to create a mushroom extract and mushroom extract powders almost solely come from Asia.
  3. North American grown products are myceliated grain and that grain ends up being a large portion of the final product.
  4. Look for certified organic sources
  5. Make sure the Supplements Panel specifies beta-glucan content
  6. As with most medicinal mushrooms, clinical data is still limited so we are required to extrapolate and infer from in-vitro and in-vivo data.

We always recommend selecting products that are extracted from the mushroom (fruiting body), ideally certified organic, with measured levels of beta-glucans like our very own cordyceps mushroom extract. For more information about buying mushroom supplements and what to look out for, visit our article on the difference between mycelium and fruiting body.

If you have any questions? Please comment below!

Shop Now

Real Mushrooms Cordyceps*Disclaimer: The statements made in this article have not been evaluated by the Food and Drug Administration. Any products mentioned are not intended to diagnose, treat, cure, or prevent any disease. The information in this article is intended for educational purposes. The information is not intended to replace medical advice offered by licensed medical physicians. Please consult your doctor or health practitioner for any medical advice.

Resources

  1. Sprecher, M., & Sprinson, D. B. (1963). A Reinvestigation of the Structure of “Cordycepic Acid” 1a. The Journal of Organic Chemistry, 28(9), 2490–2491. 
  2. Yuan, J. P., Zhao, S. Y., Wang, J. H., Kuang, H. C., Liu, X., Uan, J. I. A. N. I. N. G. Y., … Iu, X. I. N. L. (2008). Distribution of nucleosides and nucleobases in edible fungi. Journal of Agricultural and Food Chemistry, 56(3), 809–815.
  3. Chilton, Jeff, Nammex, 2015. Redefining Medicinal Mushrooms.
  4. McCleary, B. V., & Draga, A. (2016). Measurement of ß-Glucan in mushrooms and mycelial products. Journal of AOAC International, 99(2), 364–373.
  5. Chen, S., Li, Z., Krochmal, R., Abrazado, M., Kim, W., & Cooper, C. B. (2010). Effect of Cs-4 (Cordyceps sinensis) on exercise performance in healthy older subjects: a double-blind, placebo-controlled trial. Journal of Alternative and Complementary Medicine, 16(5), 585–90. 
  6. Hur, Hyun. (2008). Chemical ingredients in Cordyceps militaris. Mycobiology, volume 36
  7. Tuli HS, Sharma AK, Sandhu SS, Kashyap D. (2013). Cordycepin: a bioactive metabolite with therapeutic benefits. Life Sciences.
  8. Song J, Wang Y, Teng M, Cai G, Xu H, Guo H, Liu Y, Wang D, Teng L. (2015). Studies on the Antifatigue Activities of Cordyceps militaris Fruit Body Extract in Mouse Model. Evidence Based Complimentary Alternative Medicine.
  9. Phan, C.-W., David, P., Naidu, M., Wong, K.-H., & Sabaratnam, V. (2013). Neurite outgrowth stimulatory effects of culinary-medicinal mushrooms and their toxicity assessment using differentiating Neuro-2a and embryonic fibroblast BALB/3T3. BMC Complementary and Alternative Medicine, 13(1), 261. 
  10. http://www.fungimag.com/spring-2017-articles/V10I1%20LR%20Yartsa%2053_64.pdf
  11. http://mushroaming.com/sites/default/files/Winkler%20Yartsa%20Gunbu%20EB%202008.pdf
  12. Hopping, K. A., Chignell, S. M., & Lambin, E. F. (2018). The demise of caterpillar fungus in the Himalayan region due to climate change and overharvesting. Proceedings of the National Academy of Sciences, 115(45), 11489–11494. https://doi.org/10.1073/pnas.1811591115
  13. Holliday J, Cleaver M (2008) Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) Link (Ascomycetes): a review. Int J Med Mushrooms 10:219–234
  14. Smiderle, F. R., Baggio, C. H., Borato, D. G., Santana-Filho, A. P., Sassaki, G. L., Iacomini, M., & Van Griensven, L. J. (2014). Anti-inflammatory properties of the medicinal mushroom Cordyceps militaris might be related to its linear (1→3)-β-D-glucan. PloS one, 9(10), e110266. https://doi.org/10.1371/journal.pone.0110266
  15. Kuo, Y. C., Tsai, W. J., Shiao, M. S., Chen, C. F., & Lin, C. Y. (1996). Cordyceps sinensis as an immunomodulatory agent. The American journal of Chinese medicine, 24(2), 111–125. https://doi.org/10.1142/S0192415X96000165
  16. Kim KM, Kwon YG, Chung HT, et al. Methanol extract of Cordyceps pruinosa inhibits in vitro and in vivo inflammatory mediators by suppressing NF-kappaB activation. Toxicol Appl Pharmacol. 2003;190(1):1-8. doi:10.1016/s0041-008x(03)00152-2
  17. Hsu, C. H., Sun, H. L., Sheu, J. N., Ku, M. S., Hu, C. M., Chan, Y., & Lue, K. H. (2008). Effects of the immunomodulatory agent Cordyceps militaris on airway inflammation in a mouse asthma model. Pediatrics and neonatology, 49(5), 171–178. https://doi.org/10.1016/S1875-9572(09)60004-8
  18. Won, S. Y., & Park, E. H. (2005). Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. Journal of ethnopharmacology, 96(3), 555–561. https://doi.org/10.1016/j.jep.2004.10.009
  19. Huang, D., Meran, S., Nie, S. P., Midgley, A., Wang, J., Cui, S. W., … & Phillips, A. O. (2018). Cordyceps sinensis: anti-fibrotic and inflammatory effects of a cultured polysaccharide extract. Bioactive carbohydrates and dietary fibre, 14, 2-8.
  20. Park, D. K., Choi, W. S., Park, P. J., Kim, E. K., Jeong, Y. J., Choi, S. Y., Yamada, K., Kim, J. D., & Lim, B. O. (2008). Immunoglobulin and cytokine production from mesenteric lymph node lymphocytes is regulated by extracts of Cordyceps sinensis in C57Bl/6N mice. Journal of medicinal food, 11(4), 784–788. https://doi.org/10.1089/jmf.2007.0550
  21. Wang, M. F., Zhu, Q. H., & He, Y. G. (2013). Treatment with Cordyceps sinensis enriches Treg population in peripheral lymph nodes and delays type I diabetes development in NOD mice. Die Pharmazie, 68(9), 768–771.
  22. Shi, B., Wang, Z., Jin, H., Chen, Y. W., Wang, Q., & Qian, Y. (2009). Immunoregulatory Cordyceps sinensis increases regulatory T cells to Th17 cell ratio and delays diabetes in NOD mice. International immunopharmacology, 9(5), 582–586. https://doi.org/10.1016/j.intimp.2009.01.030
  23. Kim, H. G., Shrestha, B., Lim, S. Y., Yoon, D. H., Chang, W. C., Shin, D. J., Han, S. K., Park, S. M., Park, J. H., Park, H. I., Sung, J. M., Jang, Y., Chung, N., Hwang, K. C., & Kim, T. W. (2006). Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-kappaB through Akt and p38 inhibition in RAW 264.7 macrophage cells. European journal of pharmacology, 545(2-3), 192–199. https://doi.org/10.1016/j.ejphar.2006.06.0×47
  24. Noh, E. M., Kim, J. S., Hur, H., Park, B. H., Song, E. K., Han, M. K., Kwon, K. B., Yoo, W. H., Shim, I. K., Lee, S. J., Youn, H. J., & Lee, Y. R. (2009). Cordycepin inhibits IL-1beta-induced MMP-1 and MMP-3 expression in rheumatoid arthritis synovial fibroblasts. Rheumatology (Oxford, England), 48(1), 45–48. https://doi.org/10.1093/rheumatology/ken417
  25. Kim, K. M., Kwon, Y. G., Chung, H. T., Yun, Y. G., Pae, H. O., Han, J. A., Ha, K. S., Kim, T. W., & Kim, Y. M. (2003). Methanol extract of Cordyceps pruinosa inhibits in vitro and in vivo inflammatory mediators by suppressing NF-kappaB activation. Toxicology and applied pharmacology, 190(1), 1–8. https://doi.org/10.1016/s0041-008x(03)00152-2
  26. Wang, J., Chen, C., Jiang, Z., Wang, M., Jiang, H., & Zhang, X. (2016). Protective effect of Cordyceps militaris extract against bisphenol A induced reproductive damage. Systems biology in reproductive medicine, 62(4), 249–257. https://doi.org/10.1080/19396368.2016.1182234
  27. Manna, P. R., Stetson, C. L., Slominski, A. T., & Pruitt, K. (2016). Role of the steroidogenic acute regulatory protein in health and disease. Endocrine, 51(1), 7–21. https://doi.org/10.1007/s12020-015-0715-6
  28. Leu, S. F., Poon, S. L., Pao, H. Y., & Huang, B. M. (2011). The in vivo and in vitro stimulatory effects of cordycepin on mouse leydig cell steroidogenesis. Bioscience, biotechnology, and biochemistry, 75(4), 723–731. https://doi.org/10.1271/bbb.100853
  29. Aitken, R. J., & Roman, S. D. (2008). Antioxidant systems and oxidative stress in the testes. Oxidative medicine and cellular longevity, 1(1), 15–24. https://doi.org/10.4161/oxim.1.1.6843
  30. Li, S. P., Li, P., Dong, T. T., & Tsim, K. W. (2001). Anti-oxidation activity of different types of natural Cordyceps sinensis and cultured Cordyceps mycelia. Phytomedicine : international journal of phytotherapy and phytopharmacology, 8(3), 207–212. https://doi.org/10.1078/0944-7113-00030
  31. Chang, Y., Jeng, K. C., Huang, K. F., Lee, Y. C., Hou, C. W., Chen, K. H., Cheng, F. Y., Liao, J. W., & Chen, Y. S. (2008). Effect of Cordyceps militaris supplementation on sperm production, sperm motility and hormones in Sprague-Dawley rats. The American journal of Chinese medicine, 36(5), 849–859. https://doi.org/10.1142/S0192415X08006296
  32. Rossi, P., Buonocore, D., Altobelli, E., Brandalise, F., Cesaroni, V., Iozzi, D., Savino, E., & Marzatico, F. (2014). Improving Training Condition Assessment in Endurance Cyclists: Effects of Ganoderma lucidum and Ophiocordyceps sinensis Dietary Supplementation. Evidence-based complementary and alternative medicine : eCAM, 2014, 979613. https://doi.org/10.1155/2014/979613
  33. Hsu, C. C., Lin, Y. A., Su, B., Li, J. H., Huang, H. Y., & Hsu, M. C. (2011). No effect of cordyceps sinensis supplementation on testosterone level and muscle strength in healthy young adults for resistance training. Biology of Sport, 28(2), 107.
  34. Wan F, Guo Y, Deng X. Sex hormone like effects of Jin Shui Bao [Cs-4] capsule: Pharmacological and clinical studies. Chinese Trad Patent Med. 1988;9:29–31
  35. Lin, B. Q., & Li, S. P. (2011). Cordyceps as an Herbal Drug. In I. Benzie (Eds.) et. al., Herbal Medicine: Biomolecular and Clinical Aspects. (2nd ed.). CRC Press/Taylor & Francis.
  36. Lo, H. C., Tu, S. T., Lin, K. C., & Lin, S. C. (2004). The anti-hyperglycemic activity of the fruiting body of Cordyceps in diabetic rats induced by nicotinamide and streptozotocin. Life sciences, 74(23), 2897–2908. https://doi.org/10.1016/j.lfs.2003.11.003
  37. Liu, C., Song, J., Teng, M., Zheng, X., Li, X., Tian, Y., Pan, M., Li, Y., Lee, R. J., & Wang, D. (2016). Antidiabetic and Antinephritic Activities of Aqueous Extract of Cordyceps militaris Fruit Body in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats. Oxidative medicine and cellular longevity, 2016, 9685257. https://doi.org/10.1155/2016/9685257
  38. Zhang, H. W., Lin, Z. X., Tung, Y. S., Kwan, T. H., Mok, C. K., Leung, C., & Chan, L. S. (2014). Cordyceps sinensis (a traditional Chinese medicine) for treating chronic kidney disease. The Cochrane database of systematic reviews, (12), CD008353. https://doi.org/10.1002/14651858.CD008353.pub2
  39. Yu, S. H., Chen, S. Y., Li, W. S., Dubey, N. K., Chen, W. H., Chuu, J. J., Leu, S. J., & Deng, W. P. (2015). Hypoglycemic Activity through a Novel Combination of Fruiting Body and Mycelia of Cordyceps militaris in High-Fat Diet-Induced Type 2 Diabetes Mellitus Mice. Journal of diabetes research, 2015, 723190. https://doi.org/10.1155/2015/723190
  40. Li, Y., Li, K., Mao, L., Han, X., Zhang, K., Zhao, C., & Zhao, J. (2016). Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc. PeerJ, 4, e1992. https://doi.org/10.7717/peerj.1992
  41. Kuhn, M. A., Harold, D. M., & Winston, D. (2001). Herbal therapy & supplements: A scientific & traditional approach. Philadelphia: Lippincott.
  42. Guo, P., Kai, Q., Gao, J., Lian, Z. Q., Wu, C. M., Wu, C. A., & Zhu, H. B. (2010). Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. Journal of pharmacological sciences, 113(4), 395–403. https://doi.org/10.1254/jphs.10041fp
  43. Yan, X. F., Zhang, Z. M., Yao, H. Y., Guan, Y., Zhu, J. P., Zhang, L. H., Jia, Y. L., & Wang, R. W. (2013). Cardiovascular protection and antioxidant activity of the extracts from the mycelia of Cordyceps sinensis act partially via adenosine receptors. Phytotherapy research : PTR, 27(11), 1597–1604. https://doi.org/10.1002/ptr.4899
  44. Chen, S., Li, Z., Krochmal, R., Abrazado, M., Kim, W., & Cooper, C. B. (2010). Effect of Cs-4 (Cordyceps sinensis) on exercise performance in healthy older subjects: a double-blind, placebo-controlled trial. Journal of alternative and complementary medicine (New York, N.Y.), 16(5), 585–590. https://doi.org/10.1089/acm.2009.0226
  45. Parcell, A. C., Smith, J. M., Schulthies, S. S., Myrer, J. W., & Fellingham, G. (2004). Cordyceps Sinensis (CordyMax Cs-4) supplementation does not improve endurance exercise performance. International journal of sport nutrition and exercise metabolism, 14(2), 236–242. https://doi.org/10.1123/ijsnem.14.2.236
  46. Xu Y. F. (2016). Effect of Polysaccharide from Cordyceps militaris (Ascomycetes) on Physical Fatigue Induced by Forced Swimming. International journal of medicinal mushrooms, 18(12), 1083–1092. https://doi.org/10.1615/IntJMedMushrooms.v18.i12.30
  47. Hirsch, K. R., Smith-Ryan, A. E., Roelofs, E. J., Trexler, E. T., & Mock, M. G. (2017). Cordyceps militaris Improves Tolerance to High-Intensity Exercise After Acute and Chronic Supplementation. Journal of dietary supplements, 14(1), 42–53. https://doi.org/10.1080/19390211.2016.1203386
  48. Yi, X., Xi-zhen, H. & Jia-shi, Z. Randomized double-blind placebo-controlled clinical trial and assessment of fermentation product of Cordyceps sinensis (Cs-4) in enhancing aerobic capacity and respiratory function of the healthy elderly volunteers. Chin. J. Integr. Med. 10, 187–192 (2004). https://doi.org/10.1007/BF02836405
  49. Nagata, A., Tajima, T., & Uchida, M. (2006). Supplemental anti-fatigue effects of Cordyceps sinensis (Tochu-Kaso) extract powder during three stepwise exercise of human. Japanese Journal of Physical Fitness and Sports Medicine, 55(Supplement), S145-S152.
  50. Yu, H. M., Wang, B. S., Huang, S. C., & Duh, P. D. (2006). Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. Journal of agricultural and food chemistry, 54(8), 3132–3138. https://doi.org/10.1021/jf053111w
  51. He, T., Zhao, R., Lu, Y., Li, W., Hou, X., Sun, Y., Dong, M., & Chen, L. (2016). Dual-Directional Immunomodulatory Effects of Corbrin Capsule on Autoimmune Thyroid Diseases. Evidence-based complementary and alternative medicine : eCAM, 2016, 1360386. https://doi.org/10.1155/2016/1360386
  52. Pitsavos, C., Panagiotakos, D. B., Papageorgiou, C., Tsetsekou, E., Soldatos, C., & Stefanadis, C. (2006). Anxiety in relation to inflammation and coagulation markers, among healthy adults: the ATTICA study. Atherosclerosis, 185(2), 320–326. https://doi.org/10.1016/j.atherosclerosis.2005.06.001
  53. Liukkonen, T., Räsänen, P., Jokelainen, J., Leinonen, M., Järvelin, M. R., Meyer-Rochow, V. B., & Timonen, M. (2011). The association between anxiety and C-reactive protein (CRP) levels: results from the Northern Finland 1966 birth cohort study. European psychiatry : the journal of the Association of European Psychiatrists, 26(6), 363–369. https://doi.org/10.1016/j.eurpsy.2011.02.001
  54. Seely, D., & Singh, R. (2007). Adaptogenic potential of a polyherbal natural health product: report on a longitudinal clinical trial. Evidence-based complementary and alternative medicine : eCAM, 4(3), 375–380. https://doi.org/10.1093/ecam/nel101
  55. Coelho, J. E., Alves, P., Canas, P. M., Valadas, J. S., Shmidt, T., Batalha, V. L., Ferreira, D. G., Ribeiro, J. A., Bader, M., Cunha, R. A., do Couto, F. S., & Lopes, L. V. (2014). Overexpression of Adenosine A2A Receptors in Rats: Effects on Depression, Locomotion, and Anxiety. Frontiers in psychiatry, 5, 67. https://doi.org/10.3389/fpsyt.2014.00067
  56. Gessi, S., Merighi, S., & Borea, P. A. (2014). Targeting adenosine receptors to prevent inflammatory skin diseases. Experimental dermatology, 23(8), 553–554. https://doi.org/10.1111/exd.12474
  57. J. Wang, Y.-M. Liu, W. Cao, K.-W. Yao, Z.-Q. Liu, and J.-Y. Guo, “Anti-inflammation and antioxidant effect of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis, in middle cerebral artery occlusion-induced focal cerebral ischemia in rats,” Metabolic Brain Disease, vol. 27, no. 2, pp. 159–165, 2012.
  58. Pathak, D., Shields, L. Y., Mendelsohn, B. A., Haddad, D., Lin, W., Gerencser, A. A., Kim, H., Brand, M. D., Edwards, R. H., & Nakamura, K. (2015). The role of mitochondrially derived ATP in synaptic vesicle recycling. The Journal of biological chemistry, 290(37), 22325–22336. https://doi.org/10.1074/jbc.M115.656405
  59. Ma, M. W., Gao, X. S., Yu, H. L., Qi, X., Sun, S. Q., & Wang, D. (2018). Cordyceps sinensis Promotes the Growth of Prostate Cancer Cells. Nutrition and cancer, 70(7), 1166–1172. https://doi.org/10.1080/01635581.2018.1504091
  60. Ong, B. Y., & Aziz, Z. (2017). Efficacy of Cordyceps sinensis as an adjunctive treatment in kidney transplant patients: A systematic-review and meta-analysis. Complementary therapies in medicine, 30, 84–92. https://doi.org/10.1016/j.ctim.2016.12.007
  61. Zhang, H. W., Lin, Z. X., Tung, Y. S., Kwan, T. H., Mok, C. K., Leung, C., & Chan, L. S. (2014). Cordyceps sinensis (a traditional Chinese medicine) for treating chronic kidney disease. The Cochrane database of systematic reviews, (12), CD008353. https://doi.org/10.1002/14651858.CD008353.pub2
  62. Jiraungkoorskul, K., & Jiraungkoorskul, W. (2016). Review of Naturopathy of Medical Mushroom, Ophiocordyceps Sinensis, in Sexual Dysfunction. Pharmacognosy reviews, 10(19), 1–5. https://doi.org/10.4103/0973-7847.176566
  63. Grant, P., & Ramasamy, S. (2012). An update on plant derived anti-androgens. International journal of endocrinology and metabolism, 10(2), 497–502. https://doi.org/10.5812/ijem.3644
Skye Chilton

Skye Chilton

Skye is the founder of Real Mushrooms. Read more about his story into medicinal mushrooms here. When he’s not spreading the word of Real Mushrooms, he enjoys mushroom foraging, bouldering, cooking, gardening and hiking.